A Categorical Semantics for The Parallel Lambda-Calculus

نویسندگان

  • Germain Faure
  • Alexandre Miquel
چکیده

In this report, we define a sound and complete categorical semantics for the parallel λ-calculus, based on a notion of aggregation monad which is modular w.r.t. associativity, commutativity and idempotence. To prove completeness, we introduce a category of partial equivalence relations adapted to parallelism, in which any extension of the basic equational theory of the calculus is induced by some model. We also present abstract methods to construct models of the parallel λ-calculus in categories where particular equations have solutions, such as the category of Scott domains and its variants, and check that G. Boudol’s original semantics is a particular case of ours. Key-words: Denotational semantics, categorical semantics, parallel lambda-calculus, monad, strong monad, Scott domains, pers models. in ria -0 04 24 24 8, v er si on 1 14 O ct 2 00 9 Une sémantique catégorique du lambda-calcul parallèle Résumé : Dans ce rapport, nous définissons une sémantique correcte et complète pour le λ-calcul parallèle. Cette sémantique est basée sur une notion de monade d’agrégation qui est modulaire par rapport à l’associativité, la commutativité et l’idempotence. Pour prouver le complétude, nous introduisons une catégorie de relations d’équivalence partielle (p.e.r.s) qui est adaptée au parallélisme et dans laquelle toute extension de la théorie équationelle du calcul est induite par un modèle. Nous présentons aussi des méthodes abstraites pour construire des modèles du λcalcul parallèle dans des catégories où des certaines équations ont des solutions, comme la catégorie des domaines de Scott et ses variantes. Nous vérifions que la sémantique initiale donnée par G. Boudol est un cas particulier de la nôtre. Mots-clés : Sémantique dénotationnelle, sémantique catégorique, lambda-calcul parallèle, monade, monade forte, domaines de Scott, modèles de relations d’équivalence partielles. in ria -0 04 24 24 8, v er si on 1 14 O ct 2 00 9 A Categorical Semantics for The Parallel Lambda-Calculus 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A typed, algebraic, computational lambda-calculus

Lambda-calculi with vectorial structures have been studied in various ways, but their semantics remain mostly untouched. The main contribution of this paper is to provide a categorical framework for the semantics of such algebraic lambda-calculi. We first develop a categorical analysis of a general simply-typed lambda-calculus endowed with a structure of module. We study the problems arising fr...

متن کامل

Quantum Lambda Calculus

We discuss the design of a typed lambda calculus for quantum computation. After a brief discussion of the role of higher-order functions in quantum information theory, we define the quantum lambda calculus and its operational semantics. Safety invariants, such as the no-cloning property, are enforced by a static type system that is based on intuitionistic linear logic. We also describe a type i...

متن کامل

Quantum Computation, Categorical Semantics and Linear Logic

We develop a type theory and provide a denotational semantics for a simple fragment of the quantum lambda calculus, a formal language for quantum computation based on linear logic. In our semantics, variables inhabit certain Hilbert bundles, and computations are interpreted as the appropriate inner product preserving maps between Hilbert bundles. These bundles and maps form a symmetric monoidal...

متن کامل

Denotational Semantics of Call-by-name Normalization in Lambda-mu Calculus

We study normalization in the simply typed lambda-mu calculus, an extension of lambda calculus with control flow operators. Using an enriched version of the Yoneda embedding, we obtain a categorical normal form function for simply typed lambda-mu terms, which gives a special kind of a call-by-name denotational semantics particularly useful for deciding equalities in the lambda-mu calculus.

متن کامل

Control categories and duality: on the categorical semantics of the lambda-mu calculus

We give a categorical semantics to the call-by-name and call-by-value versions of Parigot’s -calculus with disjunction types. We introduce the class of control categories, which combine a cartesian-closed structure with a premonoidal structure in the sense of Power and Robinson. We prove, via a categorical structure theorem, that the categorical semantics is equivalent to a CPS semantics in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007